Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.21.20248383

ABSTRACT

Modern transportation plays a key role in the long-distance and rapid spread of SARS-CoV-2. However, little is known about the transmission risk of SARS-CoV-2 on confined vehicles, such as airplanes and trains. Based on the itinerary and epidemiological data of COVID-19 cases and close contacts among 9,265 airline passengers on 291 airplanes and 29,335 passengers on 830 high-speed trains in China from December 20, 2019 to March 17, 2020, we estimated that the upper bound of overall attack rate of COVID-19 among passengers was 0.60% (95% confidence interval: 0.43%-0.84%) for airplanes and 0.35% (0.28%-0.44%) for trains departing from Wuhan before its lockdown, respectively. The reproduction number during travel ranged from 0.12 to 0.19 on airplanes and from 0.07 to 0.12 on trains, with the risk varying by seat distance from the index case and joint travel time, but the difference in risk was not significant between the types of aircraft and train. Overall, the risk of SARS-CoV-2 transmission on planes and high-speed trains with high efficiency air filtration devices was relatively low. Our findings improve understanding of COVID-19 spread during travel and may inform response efforts, such as lifting travel restrictions, and resuming transportation in the pandemic.


Subject(s)
COVID-19
2.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2012.00229v2

ABSTRACT

Acute lower respiratory infections caused by respiratory viruses are common and persistent infectious diseases worldwide and in China, which have pronounced seasonal patterns. Meteorological factors have important roles in the seasonality of some major viruses. Our aim was to identify the dominant meteorological factors and to model their effects on common respiratory viruses in different regions of China. We analysed monthly virus data on patients from 81 sentinel hospitals in 22 provinces in mainland China from 2009 to 2013. The geographical detector method was used to quantify the explanatory power of each meteorological factor, individually and interacting in pairs. 28369 hospitalised patients with ALRI were tested, 10387 were positive for at least one virus, including RSV, influenza virus, PIV, ADV, hBoV, hCoV and hMPV. RSV and influenza virus had annual peaks in the north and biannual peaks in the south. PIV and hBoV had higher positive rates in the spring summer months. hMPV had an annual peak in winter spring, especially in the north. ADV and hCoV exhibited no clear annual seasonality. Temperature, atmospheric pressure, vapour pressure, and rainfall had most explanatory power on most respiratory viruses in each region. Relative humidity was only dominant in the north, but had no significant explanatory power for most viruses in the south. Hours of sunlight had significant explanatory power for RSV and influenza virus in the north, and for most viruses in the south. Wind speed was the only factor with significant explanatory power for human coronavirus in the south. For all viruses, interactions between any two of the paired factors resulted in enhanced explanatory power, either bivariately or non-linearly.

SELECTION OF CITATIONS
SEARCH DETAIL